Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 57(1): 71-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114885

RESUMO

Biodiversity in the Brazilian Cerrado biome has been declining sharply with the continued expansion of agriculture and the excessive use of herbicides. Thus, the aim of this study was to evaluate the morphophysiological and biochemical responses in Dipteryx alata plants to various doses of the herbicide 2,4-D. Specific biomarkers that characterize the phytoindicator potential of this species were determined. Gas exchange, chlorophyll a fluorescence, photosynthetic pigments, and the activities of antioxidant enzymes and cellulase were performed after 24, 96 and/or 396 hours after 2,4-D application (HAA). The herbicide caused higher antioxidant enzymatic activity 24 HAA and damage to the photosynthetic machinery after 96 HAA. Reduction in gas exchange, chlorophyll content, and photochemical traits were observed. Increased respiratory rates, non-photochemical quenching, and carotenoid concentrations in 2,4-D-treated plants were important mechanisms in the defense against the excess energy absorbed. Furthermore, the absence of leaf symptoms suggested tolerance of D. alata to 2,4-D. Nevertheless, changes in the photosynthetic and biochemical metabolism of D. alata are useful as early indicators of herbicide contamination, especially in the absence of visual symptoms. These results are important for early monitoring of plants in conserved areas and for preventing damage to sensitive species.


Assuntos
Herbicidas , Árvores , Ácido 2,4-Diclorofenoxiacético/toxicidade , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brasil , Clorofila/metabolismo , Clorofila A/metabolismo , Ecossistema , Herbicidas/farmacologia , Fotossíntese , Folhas de Planta/metabolismo , Árvores/metabolismo
2.
Physiol Plant ; 172(2): 1301-1320, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33554371

RESUMO

Little is known about the role of light intensity in modulating plant responses to stress due to water deficit (WD). Thus, the objective of this study was to determine the WD and contrasting irradiance effects on the physiology, anatomy, and grain yield of soybean plants. The experimental design was a randomized block in a growth chamber and a 2 × 2 factorial treatment arrangement: 90% (well-watered, WW) and 40% (WD) of soil field capacities (FC); and 750 (medium irradiance, MI) and 1500 (higher irradiance, HI) µmol (photons) m-2  s-1 irradiance. The WD caused a lower photosynthetic rate - as well as observed in the light curve and in the relative parameters, such as apparent quantum efficiency -, less investment in shoot biomass and pollen grain germination, resulting in lower grain yield. However, there was an increase in non-photochemical energy dissipation, a higher concentration of total soluble sugars, proline, and malondialdehyde. The WD + MI-soybean plants developed thicker spongy parenchyma (related to higher mesophilic conductance of CO2 ). In the WW + HI condition the palisade parenchyma was thicker, conferring maintenance of photosynthetic efficiency. In addition, there was an increase in the activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes in leaves due to HI, regardless of FC. This induced higher energy expenditure, reflected in the reduction of the number of leaf and branches, leaf area, dry mass of leaves and stem in the WW + HI. Interestingly, these strategies of osmotic adjustment, photoprotection, and antioxidant defenses act together in the WD + HI.


Assuntos
Glycine max , Água , Ascorbato Peroxidases/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...